Association between solar insolation and a history of suicide attempts in bipolar I disorder

PII: S0022-3956(18)31214-7
DOI: https://doi.org/10.1016/j.jpsychires.2019.03.001
Reference: PIAT 3596

To appear in: Journal of Psychiatric Research

Received Date: 12 October 2018
Revised Date: 5 February 2019
Accepted Date: 1 March 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Abstract

In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. **Solar insolation is the amount of electromagnetic energy from the sun striking a surface area on earth.** Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients \(p<0.01 \)). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.

Keywords: Bipolar disorder, suicide, sunlight, solar insolation, seasonal variation
Association between solar insolation and a history of suicide attempts in bipolar I disorder

Strejilevichaap, Mythily Subramaniamaaq, Ahmad Hatim Sulaimanaar, Kirsi Suominenaas, Hiromi Tagataaz, Yoshitaka Tatebayashiaal, Leonardo Tondoaau,aaav, Carla Torrentaaw, Arne E. Vaalerax,ay, Edgar Varesa, Julia Veehaak, Eduard Vietaaaw, Biju Viswanathaad, Maria Yoldi-Negreteaax, Mark Zetin††aay, Yosra Zguebaac, Peter C. Whybrowaaz.

\textdagger Died in 2016
\textdaggerdbl Died in 2017

aDepartment of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
bChronoRecord Association, Fullerton, CA, USA
cDepartment of Psychiatry, Dalhousie University, Halifax, NS, Canada
dNORMENT – K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
eDepartment of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
fSection of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
gDepartment of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
hDepartment of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
iDepartment of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
jNational Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico
kPsychiatry and Addiction Medicine. Assistance Publique – Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, Fondamental Foundation, Paris, France

lDepartment of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel

mDeakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Vic., Australia

nDepartment of Psychiatry, Orygen, the National Centre for Excellence in Youth Mental Health, the Centre for Youth Mental Health and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia

oVan Research and Training Hospital, Van, Turkey

pButabika Hospital, Kampala, Uganda

qMood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile

rDepartment of General Adult Psychiatry, Castle Peak Hospital, Hong Kong

sDepartment of Psychiatry, University of Melbourne, Parkville, Victoria, Australia

tDepartment of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOU S), Siena, Italy

uDivision of Neurosciences, 3rd Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece

vDepartment of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA

wDepartment of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Mood Disorders Center of Ottawa, University of Toronto, Toronto, ON, Canada

Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan

AP-HP, Hopitaux Universitaires Henri Mondor and INSERM U955 (IMRB) and Université Paris Est and Institut Pasteur, Unité Perception et Mémoire, Paris, France

Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

National Institute for Health and Welfare, Helsinki, Finland

Department of Psychiatry, University of Tartu, Tartu, Estonia

Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Private practice, Tunis, Tunisia

Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland

BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria

Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia

Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
a1Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil

a2Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden

a3Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden

a4Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark

a5Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

a6Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia

a7Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada

a8Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada

a9Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy

a10Department of Psychiatry, University of Massachusetts, Worcester, MA, USA,

a11Department of General Psychiatry, Mood Disorders Unit, Institute of Mental Health, Singapore City, Singapore

a12Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
aDepartment of Mental Health, Norwegian University of Science and Technology – NTNU, Trondheim, Norway

ayDepartment of Psychiatry, St Olavs’ University Hospital, Trondheim, Norway

azSoviet Psychoneurological Hospital, Urai, Russia

aaaDepartment of Psychiatry, University of California San Diego, San Diego, CA, USA

aabAsha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India

aacRazi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia

aadDepartment of Psychiatry, NIMHANS, Bangalore, India

aeeTunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2. Tunis, Tunisia

aafHospital "Ángeles del Pedregal", Mexico City, Mexico

aagLucio Bini Mood Disorder Center, Cagliari, Italy

aahDepartment of Psychiatry, Diego Portales University, Santiago de Chile, Chile

aaiUCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

aaDepartment of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA

aakDepartment of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany

aalDepartment of Psychiatry, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
aaamDepartment of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
aaasScience Directorate/Climate Science Branch, NASA Langley Research Center Hampton, VA, USA
aaaoDepartment of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
aaapBipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
aaarResearch Division, Institute of Mental Health, Singapore
aaasDepartment of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
aaasDepartment of Social Services and Health Care, Psychiatry, City of Helsinki, Helsinki, Finland
aaasSchizophrenia & Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Seatagaya, Tokyo, Japan,
aaawMcLean Hospital-Harvard Medical School, Boston, MA, USA
aaawMood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
aaawClinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
aaawConsejo Nacional de Ciencia y Tecnología - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
aaavDepartment of Psychology, Chapman University, Orange, CA, USA
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior University of California Los Angeles (UCLA), Los Angeles, CA, USA

Corresponding author:

Michael Bauer, MD, PhD
Professor and Chair, Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden
Fetscherstr. 74
01307 Dresden
Germany
Phone: ++49 351 458 2760
Fax: ++49 351 458 4324
Email: michael.bauer@uniklinikum-dresden.de
1. Introduction

Patients with bipolar disorder have a very high risk of suicidal behavior with about 1/3 of patients attempting suicide at least once (Novick et al., 2010; Tondo et al., 2016). A complex interplay of diverse factors contribute to suicidal behavior, including cultural, socioeconomic, genetic, stressful life experiences, the course of bipolar disorder and physical health (Schaffer et al., 2015; Tondo et al., 2016). Research has also found a relation between environmental factors and suicide rates. Many international studies of the general population have reported a seasonal variation in completed suicide and suicide attempts with peak rates in spring or summer (Barker et al., 1994; Christodoulou et al., 2012; Coimbra et al., 2016; Dixon and Kalkstein, 2018; Woo et al., 2012; Galvão et al., 2018; Odagiri et al., 2011; Petridou et al., 2002). Seasonality in suicide may be associated with a prior psychiatric diagnosis (Postolache et al., 2010; Reutfors et al., 2009; Rocchi et al., 2007).

This association of suicide rates with environmental factors is of considerable concern since circadian rhythm disturbances are found in many psychiatric illnesses, including bipolar disorder (Carr et al., 2018; Jagannath et al., 2013; Jones and Benca, 2015; Logan and McClung, 2019). Although strongly linked, the relationship between circadian disruption and the development and course of bipolar disorder is complex, bidirectional and not understood (Bechtel 2015; Harvey, 2008; Ketchesin et al., 2018; Logan and McClung, 2019; McCarthy, 2018; McCarthy and Welsh, 2012; Oliveira et al., 2018). Circadian disturbances that occur frequently in bipolar disorder include alterations to the sleep/wake cycle and daily
hormonal secretion, and misalignments between external time and social activities (Abreu and Bragança, 2015; Bellivier et al., 2015; Talih et al., 2018; Wirz-Justice, 2006). While symptoms of circadian disruption are most prominent during episodes of mania or depression, many occur when patients are euthymic including sleep disturbances, irregular social rhythms, preference for evening activities, and abnormalities in melatonin secretion (Alloy et al., 2017; Melo et al., 2017; Ng et al., 2015; Soreca, 2014; Takaesu, 2018). About one-fourth of patients with bipolar disorder experience a seasonal pattern in episode type, with manic episodes peaking in spring/summer and depression in winter (Geoffroy et al., 2014; 2015). Hospitalizations for mania are more numerous in spring/summer than in winter (Aguglia et al., 2017; Geoffroy et al., 2014). Some treatments for bipolar disorder may directly or indirectly target the circadian system (Bellivier et al., 2015; McClung, 2007).

Analyzing a large global sample, we previously found a strong, inverse relation between the maximum monthly increase in solar insolation in springtime and the age of onset of bipolar I disorder (Bauer et al., 2012; 2014; 2017), where solar insolation is defined as the amount of electromagnetic energy from the Sun striking a surface area of the Earth, expressed in kilowatt hours/square meter/day (kWh/m²/day) (Stackhouse et al., 2018).

This replicated finding suggests that some patients with bipolar disorder may have difficulty adjusting to an environmental challenge to the circadian system. The purpose of this exploratory post-hoc analysis was to investigate if solar insolation was associated with a history of suicide attempts in patients with bipolar I disorder, using the data previously collected.
2. Methods

2.1 Data collection

Data were collected between 2010 and 2016 by researchers at 50 sites in 32 countries to study the effects of solar insolation on the age of onset of bipolar disorder (Bauer et al., 2017). The database contains information on 7392 patients of which 5536 patients have a diagnosis of bipolar I disorder based on DSM-IV criteria. Data were obtained by patient questioning, record review or both. Study approval, including for data collection, was obtained according to local requirements, using local institutional review boards. To maximize global participation, the database only includes minimal clinical data. Three locations were collected for every patient: birth location, onset location of bipolar disorder, and current location. Details about the project methodology were published previously (Bauer et al., 2012; 2014; 2017).

The 50 collection sites are in both the northern and southern hemispheres: Aalborg, Denmark; Aarhus, Denmark; Adelaide, Australia; Ankara, Turkey; Athens, Greece; Bangalore, India; Barcelona, Spain; Beer Sheva, Israel; Buenos Aires, Argentina; Cagliari, Sardinia, Italy (2 sites); Calgary, Canada; Cape Town, South Africa; Dresden, Germany; Halifax, Canada; Helsinki, Finland; Hong Kong; Hyderabad, India; Kampala, Uganda; Kansas City, KS, USA; Khanti-Mansiysk, Russia; Kuala Lumpur, Malaysia; Los Angeles, CA, USA; Medellín, Colombia; Melbourne/Geelong, Australia; Mexico City, Mexico; Oslo, Norway; Ottawa, Canada; Palo Alto, CA, USA; Paris, France; Porto Alegre, Brazil; Poznan, Poland; Rochester, MN, USA; San Diego, CA, USA; Santiago, Chile (2 sites); Salvador, Brazil; São Paulo, Brazil; Siena, Italy; Singapore;
Stockholm/Gothenburg, Sweden; Tartu, Estonia; Thessaloniki, Greece; Tokyo, Japan; Trondheim, Norway; Tunis, Tunisia; Vitoria, Spain; Wiener Neustadt, Austria; Worcester, MA, USA, and Würzburg, Germany.

2.2 Solar Insolation

The NASA POWER database provides global 35+ year average monthly solar insolation data based on satellite observations collected between 1983 and the present (Stackhouse et al., 2018). This study uses a 22-year climatology of solar insolation spanning 1983 to 2005 at a spatial resolution of 1º x 1º latitude/longitude. The pattern of monthly solar insolation varies by latitude during the course of a year, with little change at the equator and the greatest change near the north and south poles. Local conditions including cloud cover, aerosols (including dust and pollution), water vapor amounts, and altitude result in very different solar insolation for locations at the same latitude. For example, Nice, France at latitude 43.70 N, and Toronto, Canada at latitude 43.67 N have the same hours of daylight but receive different solar insolation due to local conditions.

For every location, monthly and seasonal variables were created using the monthly solar insolation averages. The ratio of the mean northern hemisphere winter (December, January, February) to mean summer (June, July, August) insolation was calculated as mean winter insolation/mean summer insolation. The insolation data from the southern hemisphere were shifted by 6 months for comparison to data from the northern hemisphere to account for the seasonal cycle.
2.3 Country data

A variety of socioeconomic variables were investigated including the physician density of any specialty per 1000 population, psychiatrists per 100,000, GDP per capita, total healthcare spending as a percent of GDP, the Gini index of income inequality, and the country median age (CIA World Factbook, 2016; WHO, 2005). Data were also obtained on whether the country has a state-sponsored or officially favored religion (Pew Research, 2017).

2.4 Statistics

The generalized estimating equations (GEE) statistical technique was selected to account for both the correlated data and unbalanced number of patients at the international collection sites. The GEE uses a population averaged or marginal approach, estimating the dependent variable as a function of the covariates across the entire population rather than within a cluster (Zeger and Liang, 1986). The GEE models were estimated using a binomial distribution, exchangeable working correlation matrix and a logit link function. In all models, a history of suicide attempts was the dependent variable. Several approaches were used to select the variables and the best model. The potential variables from univariate analyses that were significant at a level of 0.05, and variables found in prior suicide research were entered into multivariate models. The corrected quasi-likelihood independence model criterion was used to assist with multivariate model fitting (Pan, 2001). The odds ratios and confidence intervals generated by the GEE are reported. A significance level of 0.01 was used for
multivariate model evaluation to reduce the chance of type I errors. Demographic variables were reported using descriptive statistics. SPSS version 24.0 was used for all analyses.

3. Results

3.1 Patient demographics and locations

There were 5536 patients with a diagnosis of bipolar I disorder in the database, of which a history of suicide was available for 3897 patients. However, only 3365 patients were included in the analysis after eliminating those who did not have all five variables in the final model. All 532 patients eliminated for not having the five variables were missing only one variable. Of the 532 patients, all but 2 were missing a history of alcohol or substance abuse data. Of the 3365 patients in the final model, 1908 (56.7%) were female, 1457 (43.3%) were male, and 1047 (31.1%) had a history of suicide attempt. The demographic characteristics of the 3365 patients are shown in Table 1. The birth cohort groups from our prior analyses were used, with 4.8% born before 1940, 29.1% born between 1940-1959, and 66.1% born 1960 or later (Bauer et al., 2012; 2014; 2015; 2017).

The onset location was used in all analyses. Of the 3365 patients, the onset location country and current country was the same for 3286 (97.7%), and the onset location city and current city was the same for 2746 (81.6%). For the 3365 patients, the onset of bipolar disorder occurred in 310 locations in 51 countries. The larger number of onset locations than collection sites is consistent with worldwide migration into urban
areas (WHO 2018). The onset locations represent a wide range of latitudes in the northern and southern hemispheres as shown in Table 2. Each location contained a mean of 11 patients, with 5.3% of the 3365 patients in a location of one.

3.2 Ratio of mean winter solar insolation/mean summer solar insolation
In locations that are near the poles, the mean solar insolation in winter is very small when compared to the summer solar insolation, resulting in a very small ratio. For example, the ratio was 0.067 for Trondheim, Norway and 0.095 for Khanti-Mansiysk, Russia. In contrast, locations near the equator have little change in winter and summer insolation and a ratio near 1, such as 1.140 for Kampala, Uganda and 1.056 for Singapore. See Table 2. Log transformation of the ratio was not required.

3.3 Model results
The best fitting model for a history of suicide attempts is shown in Table 3. This model includes the ratio of mean winter solar insolation/mean summer solar insolation, gender, history of alcohol or substance abuse, living in a country with a state-sponsored or favored religion, and birth cohort. The estimated coefficients suggested that a 0.1 percent increase in the ratio of mean winter to summer insolation will decrease the odds of a suicide attempt by about 4.9%. Comparing the largest ratio (near the equator) to the smallest ratio (near the north pole), there was a 49% decrease in the odds of a suicide attempt. Being male will decrease the odds of a suicide attempt by 47%, and living in a country with a state-sponsored or favored religion will decrease the odds by 32%. Having a history of alcohol or substance abuse will increase the odds of a suicide
attempt by 66%. Being in the youngest birth cohort will increase the odds of a suicide attempt by 116%, and being in the middle birth cohort will increase the odds by 97%.

The other solar insolation and socioeconomic values were not significant or the model results not as meaningful.

4. Discussion
In this global sample, 31% of the patients with bipolar I disorder have a history of suicide attempt, similar to prior research (Tondo et al., 2016; Vieta et al., 2018). The ratio of the mean winter solar insolation/mean summer solar insolation was inversely associated with an increased risk of suicide attempts. Patients from locations with smaller differences between mean winter and summer insolation such as near the equator (high ratio) had fewer suicide attempts, while those from locations with larger differences between mean winter and summer insolation (small ratio) had more suicide attempts. In the general population, suicide is a major public health challenge in polar regions with very high rates in places such as Greenland, arctic areas of Canada and Russia, and Alaska (Alaska Epidemiology, 2013; Bjerregaard and Larsen, 2015; Lehti et al., 2009; Young et al., 2015), and higher than national suicide rates in southernmost Argentina and Chile (Bustamante et al., 2016; Lawrynowicz and Baker, 2005).

There are few studies of solar radiation and suicide rates in the general population, with all studies occurring within a single country. Increased solar radiation in spring and summer was associated with an increased suicide rate in South Korea (Jee et al.,
2017), and increased solar radiation may precede suicidal acts in Germany and Greece (Müller et al., 2011; Papadopoulos et al., 2005). The cumulative low solar radiation during the long northern winter was associated with an increased risk of suicide in Finland (Ruuhela et al., 2009). Several additional lines of evidence suggest that solar insolation may be associated with suicide attempts.

4.1 Fundamental importance of sunlight

Sunlight has broad impacts on human physiology and behavior (Munch et al., 2017; Wirz-Justice, 2006). Humans have adapted to the 24 hour light-dark cycles on Earth by developing a complex, hierarchical endogenous circadian system that is involved in virtually all physiological processes, tissue homeostasis and cellular functions (AMA, 2012; Richards and Gumz, 2013; Rosenwasser and Turek, 2015). The circadian system includes a central pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, and extends to circadian clock genes throughout the brain and all peripheral tissues (Rosenwasser and Turek, 2015). Although the periodicity of the endogenous circadian system is near 24 hours, daily entrainment is required to maintain alignment with the natural environment (AMA, 2012). Light is the primary signal that entrains the human circadian system to the environment, allowing for anticipation and adaptation to environmental and seasonal changes (AMA, 2012; Ronneberg and Merrow, 2016; Silver and Lesauter, 2008). Entrainment involves a small subset of melanopsin-expressing inner retinal ganglion cells, not involved in image formation, that detect fluctuations in the intensity of environmental light and project to the brain including the SCN (Berson et al., 2002; Hatori and Panda, 2010). The melanopsin
system is involved in many other non-image forming responses to light, including melatonin suppression, sleep regulation, the pupillary light response, and enhancing alertness (Benarroch, 2011; Berman et al., 2018; Ksendzovsky et al., 2017; Warthen and Provencio, 2012). Circadian health requires both external synchronization with the environment and internal synchronization of central and peripheral clocks (Roenneberg and Merrow, 2016; Rosenwasser and Turek, 2015).

4.2 Seasonal variations in neurotransmitters
There are seasonal variations in the neurotransmitters involved in mood regulation, and these changes may be triggered by sunlight (Christodoulou et al., 2012; Petridou et al., 2002). It is postulated that complex interactions involving genetic vulnerabilities, circadian signaling pathways and altered neurotransmitter homeostasis may modify the seasonal response in bipolar disorder, and that seasonal variations in neurotransmitter expression may trigger switches between mood states (Maruani et al., 2018; Young and Dulcis, 2015).

Many studies focus on serotonin. In studies primarily of healthy humans, serotonin turnover by the brain is lowest in winter (Lambert et al., 2002), serotonin metabolite levels in cerebrospinal fluid peak in spring (Brewerton et al., 2018; Luykx et al., 2012), and brain serotonin transporter binding density, which increases with lower synaptic levels, is higher in fall and winter (Praschak-Rieder et al., 2008). There is also diurnal variation in brain serotonin receptors and transporters levels associated with the hours of daylight (Matheson et al., 2015). Serotonin is the neurotransmitter most frequently
linked with aggressive and suicidal behavior (Coccaro et al., 2015; Manchia et al., 2017; van Heeringen and Mann, 2014). One hypothesis is that serotonergic medications may enhance the association between sunlight and suicide in the short term (Makris et al., 2016). Studies of dopamine synthesis and turnover report inconsistent seasonal changes with some finding higher dopamine in summer (Aumann et al., 2016; Tsai et al., 2011) and others in winter (Brewerton et al., 2018; Eisenberg et al., 2010). There are also seasonal changes in the neurotransmitter modulator BDNF with serum levels increasing in spring and decreasing in winter (Molendijk et al., 2012).

Vitamin D is a neurosteroid that modulates multiple functions in the developing and adult brain (Cui et al., 2017; Groves et al., 2014). Seasonality is also found in vitamin D levels globally, with lowest levels in winter in most age groups in most areas (Mithal et al., 2009). Vitamin D deficiency may be associated with mental disturbances including bipolar disorder and depression (Boerman et al., 2016; Lerner et al., 2018; Parker et al., 2017; Spedding, 2014), and an increased risk of suicide (Grudet et al., 2014; Umhau et al., 2013).

4.3 Consistency of other variables with prior research

The other variables associated with a history of suicide attempts in this analysis are consistent with prior research. A strong association between alcohol and substance abuse and a history of suicide attempts was found in patients with bipolar disorder (Carrà et al., 2014; Østergaard et al., 2017; Tidemalm et al., 2007), and in international studies of the general population (Borges and Loera 2010; Norström and Rossow,
2016; Pompili et al., 2010) including in low- and middle-income countries (Breet et al., 2018). This strong association is of considerable concern given the high prevalence of alcohol and substance abuse in patients with bipolar disorder (Hunt et al., 2016). More frequent suicide attempts by females than males were also noted in studies of bipolar disorder and of the general population (Borges et al. 2010; Schaffer et al., 2015; Tondo et al., 2016).

The finding that living in a country with a state-sponsored or preferred religion decreases the risk of suicide attempts also concurs with international research. Review articles including all major world religions have reported that the prevalent religion has a strong cultural impact, that suicide rates are lower in religious countries, and that religion may be protective against suicide and suicide attempts (Bertolote and Fleischmann, 2002; Lawrence et al., 2016; Norko et al., 2017; Stack and Kposowa, 2011; Wu et al., 2015). The finding of increasing risk of suicide attempts in younger birth cohorts is consistent with well established birth cohort effects of increasing suicide rates in younger cohorts in many countries (Granizo et al., 1996; Gunnell et al., 2003; Kwon et al., 2009; Murphy and Wetzel, 1980; Odagiri et al., 2011; Phillips, 2014). Broad societal changes are thought to contribute increasing vulnerability to suicide in younger birth cohorts including a loss of social integration and assimilation, and rapid shifts in the norms and customs that regulate behavior (Griffith and Bryan, 2016; Phillips, 2014; Stockard and O’Brien, 2002).

4.4 Limitations
There are limitations to this post-hoc exploratory study. The data analysis plan was not pre-specified, and the analyses cannot demonstrate causality or predict individual behavior. The database was not designed to collect data about suicide. There was no information on individual parameters associated with suicide attempts including marital status, education, income, employment, childhood trauma, family history of suicide, psychiatric and medical comorbidities, temperament, and individual religiosity (Borges et al. 2010; Hansson et al., 2018; Isometsä, 2014; Schaffer et al., 2015; Tondo et al., 2018). There was no data on patients receiving long-term lithium treatment, which may lower suicide risk (Baldessarini et al., 2006), or other therapies that target or modify the circadian system (Bellivier et al., 2015). There was no data on the timing of the suicide attempts, the patient age when attempts were made, relation of attempts to the phase of illness (Pallaskorpi et al., 2016). There was no individual data on sun or lighting exposure (Bauer et al., 2018). Although based on DSM-IV criteria, data gathering was not standardized across the collection sites including both the definition of suicide attempt and assessment method. Additionally, both the increase in diagnosis (Blader and Carlson, 2007) and excess mortality of bipolar disorder (Osby 2001), may bias findings relating to birth cohort effects.

Shifting data from the southern hemisphere by 6 months may discount cultural impacts of seasonality. Social variables may also be seasonal, such as the start of school sessions, but were not available (Matsubayashi et al., 2016). This analysis also did not investigate life habits, now common in the 21st century, which may enable or directly cause circadian disruption including working shifts and irregular hours (Lunn et al.,
and exposure to light-emitting diodes (LED). White LEDs, used for lighting and to backlight digital devices, have a dominant spectral wavelength in the blue light range near the peak sensitivity for the melanopsin system (Bauer et al., 2018). Other environmental factors were not considered (Bakian et al., 2014; Berk et al., 2006; Fountoulakis et al., 2016).

4.5 Solar insolation limitations

Two important issues related to solar insolation cannot be analyzed with this database. First, with winters lasting longer than 3 months near the poles, the association of continuous low solar insolation with suicidal behaviors needs investigation. Second, the 22-year average solar insolation values capture the dramatic variation in solar insolation experienced at locations around the globe but do not highlight the regional variance in insolation that has occurred over decadal timeframes (Wild et al., 2005). In many parts of the world, there was declining insolation or solar dimming between the 1950s and 1980s, followed by increasing insolation or solar brightening since the 1980s (Wild, 2012). Solar dimming and brightening are caused by changes in the transparency of the atmosphere, not directly by the Sun. Increasing clouds, aerosols and gases in the atmosphere often from air pollution are associated with solar dimming, while the opposite environmental controls are associated with brightening (Tollenaar et al., 2017; Wild, 2012). For example, in the post-2000 decade, strong solar brightening was noted in some areas of the US and Japan, with dimming in some areas of India and China (Hatzianastassiou et al., 2012; Tollenaar et al., 2017; Wild 2009; 2012). Areas within a country may have opposite tendencies or may not be impacted, and the direction of
future changes is unclear (Hatzianastassiou et al., 2012; Tollenaar et al., 2017; Wild 2009; 2012). The potential relation between local insolation variability and suicidal behaviors should be investigated.

5. Conclusion
In conclusion, this exploratory analysis suggests that living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Given the increased recognition of the importance of sunlight on human behavior and the frequent presence of circadian rhythm dysfunction in bipolar disorder, more knowledge of the relation of solar insolation to suicide attempts is needed.
References

Østergaard M.L.D., Nordentoft M., Hjorthøj C., 2017. Associations between substance use disorders and suicide or suicide attempts in people with mental illness: a Danish nation-wide, prospective, register-based study of patients diagnosed with schizophrenia, bipolar disorder, unipolar depression or personality disorder. Addiction 112, 1250-1259.

Table 1. Demographics of Bipolar I Patients (N=3365)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1908</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1457</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td>First Episode*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manic/Hypomanic</td>
<td>1575</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>Depressed</td>
<td>1634</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>Family History of Mood Disorder*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1374</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1748</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>Alcohol or Substance Abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2208</td>
<td>65.6</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1157</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>State-Sponsored Religion in Country of Onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1796</td>
<td>53.4</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1569</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td>History of Suicide Attempts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2318</td>
<td>68.9</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1047</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Cohort Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOB < 1940</td>
<td>162</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>DOB >= 1940 and < 1960</td>
<td>978</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td>DOB >= 1960</td>
<td>2225</td>
<td>66.1</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Mean</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>50.5</td>
<td>15.01</td>
<td></td>
</tr>
<tr>
<td>Age of Onset</td>
<td>25.7</td>
<td>10.71</td>
<td></td>
</tr>
</tbody>
</table>

* Missing values excluded
Table 2. Distribution of latitudes for patient onset locations (N=3365)

<table>
<thead>
<tr>
<th>Degrees Latitude North + South</th>
<th>N</th>
<th>%</th>
<th>Ratio Mean Winter Insolation/ Mean Summer Insolation</th>
<th>Example Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>219</td>
<td>6.5</td>
<td>1.0283</td>
<td>Kampala, Uganda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medellín, Columbia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Singapore</td>
</tr>
<tr>
<td>10-19</td>
<td>212</td>
<td>6.3</td>
<td>1.0686</td>
<td>Bangalore, India</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hyderabad, India</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>20-29</td>
<td>215</td>
<td>6.4</td>
<td>0.7238</td>
<td>Cancun, Mexico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hong Kong, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>30-39</td>
<td>965</td>
<td>28.7</td>
<td>0.3843</td>
<td>Adelaide, Australia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Athens, Greece</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beersheva, Isreal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cagliari, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cape Town, South Africa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Los Angeles, CA, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tunis, Tunisia</td>
</tr>
<tr>
<td>40-49</td>
<td>1153</td>
<td>34.3</td>
<td>0.2939</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boston, MA, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nova Scotia, Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paris, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Siena, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vienna, Austria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Würzburg, Germany</td>
</tr>
<tr>
<td>50-59</td>
<td>365</td>
<td>10.8</td>
<td>0.1453</td>
<td>Aarhus, Denmark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poznan, Poland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tartu, Estonia</td>
</tr>
<tr>
<td>60-69</td>
<td>235</td>
<td>7.0</td>
<td>0.0853</td>
<td>Helsinki, Finland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Khanti-Mansiysk, Russia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trondheim, Norway</td>
</tr>
<tr>
<td>70-79</td>
<td>1</td>
<td>0.0</td>
<td>0.0195</td>
<td>Hammerfest, Norway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemisphere</th>
<th>N</th>
<th>%</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td>2834</td>
<td>84.2</td>
<td>0.3917</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere</td>
<td>531</td>
<td>15.8</td>
<td>0.5278</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Estimated parameters explaining a history of suicide attempts for patients with bipolar I disorder (N=3365)a

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Coefficient estimate</th>
<th>Standard error</th>
<th>Lower</th>
<th>Upper</th>
<th>Wald Chi-square</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio mean winter insolation/mean summer insolation at onset location</td>
<td>-0.679</td>
<td>0.2061</td>
<td>-1.210</td>
<td>-0.149</td>
<td>10.869</td>
<td>0.001</td>
</tr>
<tr>
<td>State sponsored religion in onset country</td>
<td>-0.380</td>
<td>0.1409</td>
<td>-0.743</td>
<td>-0.018</td>
<td>7.291</td>
<td>0.007</td>
</tr>
<tr>
<td>Male</td>
<td>-0.635</td>
<td>0.0934</td>
<td>-0.875</td>
<td>-0.394</td>
<td>46.140</td>
<td><0.001</td>
</tr>
<tr>
<td>History of alcohol or substance abuse</td>
<td>0.506</td>
<td>0.0682</td>
<td>0.331</td>
<td>0.682</td>
<td>55.152</td>
<td><0.001</td>
</tr>
<tr>
<td>DOB \geq 1960</td>
<td>0.770</td>
<td>0.2324</td>
<td>0.171</td>
<td>1.369</td>
<td>10.980b</td>
<td>0.001b</td>
</tr>
<tr>
<td>DOB \geq 1940 and DOB < 1960</td>
<td>0.679</td>
<td>0.2103</td>
<td>0.138</td>
<td>1.221</td>
<td>10.440b</td>
<td>0.001b</td>
</tr>
</tbody>
</table>

a Dependent variable: History of suicide attempts (yes/no). Model: intercept, ratio of mean winter insolation/mean summer insolation at onset location, state sponsored religion in onset country (yes/no), gender (male/female), alcohol or substance abuse (yes/no) and birth cohort group (DOB <1940, DOB \geq 1940 and DOB < 1960, DOB \geq 1960).

b Individual parameters Wald chi-square statistic and significance. The model effects Wald chi-square and significance for the cohort parameter was 11.266 and 0.004 respectively with 2 degrees of freedom.
Declarations

Conflict of interest:
All authors declare that they have no conflict of interest.

Acknowledgement:
Michael Berk is supported by an NHMRC Senior Principal Research Fellowship (APP1059660 and APP1156072). Ole A Andreassen, Thomas D Bjella and Ingrid Melle are supported by Research Council of Norway (223273) and KG Jebsen Stiftelsen. Ravi Nadella has received funding from the Accelerator program for Discovery in Brain disorders using Stem cells (ADBS), jointly funded by the Department of Biotechnology, Government of India, and the Pratiksha trust. Biju Viswanath has received funding by Department of Science and Technology INSPIRE scheme, Government of India. Mikael Landén was supported by grants from the Swedish Research Council (K2014-62X-14647-12-51 and K2010-61P-21568-01-4), the Swedish foundation for Strategic Research (KF10-0039), and the Swedish Federal Government under the LUA/ALF agreement (ALF 20130032, ALFGBG-142041).
We thank Haydeh Olofsson for valuable data management support.

Contributors:
All authors contributed to and approved the final manuscript. Authors MB and TG designed the study and provided a draft manuscript. Authors MA, OAA, EA, RA, YA, CB, RB, BTB, CBP, FB, RHB, MB, YB, SB, HBO, TDB, JC, EYWC, MDZ, SD, MD, BE,
AF, KNF, MAF, AGP, JFG, PG, HH, CH, ETI, SJ, FK, MK, SK, SK, BK, TLK, RK, MK, BL, ML, ERL, UL, RWL, CLJ, GM, MM, WM, MMC, IM, FMU, MYM, SM, GM, EM, AAM, RM, SVM, FN, RKN, FGN, REN, CO, AO, YO, HOS, UO, YPR, MP, MP, FDRP, DQ, RR, NR, MSR, AR, PR, JKR, KS, BSR, AMS, ES, CS, DJS, SS, MS, AHS, KS, HT, YT, LT, CT, AEV, EV, JV, EV, BV, MYN, MZ and YZ were involved with data collection. Author TG provided data analysis. Authors PWS and PCW were involved in the initial review.

Role of the funding source:

The funding sources had no involvement in the study design, data collection, analysis, interpretation, report writing or the decision to submit for publication.